REDWIRE

STAARK Affordable and Mission-Agnostic Robotic Arm

Dr. Jan Dentler

1

 $\ensuremath{\mathbb{C}}$ 2022 Redwire. Proprietary, Not for Public Release.

What We Do

Redwire is accelerating humanity's expansion into space by delivering reliable, economical and sustainable infrastructure for future generations.

Integrated Mission Enabler

Redwire is a key mission enabler with products relevant to almost every space mission.

Explore, Live, and Work in Space for the Benefit of Humanity

Redwire is developing capabilities that are critical for people to live and work in space.

Multinational Mission Support

Redwire is supporting ambitious, multinational space exploration.

Scalable in-space robotics

- During the development of Archinaut One mission Redwire identified need for low-cost robotic arm for broad in-orbit operations
- Redwire had been searching for a robot arm vendor for Archinaut and couldn't find a solution under **\$10mm**.
- In 2019 Redwire established robotics centre of excellence in Luxembourg with the objective to create and produce affordable robotic arm products to support its in-orbit manufacturing and assembly ambitions and offer them on the global market
- In 2019 contracted with the Luxembourg Government to develop a flight-ready (TRL7) robotic arm subsystem "STAARK"

STAARK in a nutshell

SCALABLE AND MODULAR

- Customizable DOF
- Select best configuration & reach
- Adjust for optimal loads transfer
- New features can be installed

OPTIMIZED

- Integrated avionics
- Easily programmable software
- Lightweight components
- High performing systems

VISION-GUIDED ROBOTICS

- Intelligent system for autonomous and semiautonomous operations
- Broad suite of sensors

FAMILY OF END EFFECTORS

For off-the-shelf capabilities such as grippers, tools, printers, thrusters & more

STANDARD INTERFACES

Integration with spacecraft and connecting custom end-effectors

STAARK LEO-S10

- Baseline Specification:
 - 6 DoF robotic manipulator
 - 1.965 m reach without end effector
 - 1 x Robotic Control Unit per manipulator (data/power interface to customer)
 - 1 x Flight Internal Harness Set
 - 1 x STAARK Flight Software
 - 4 x Hold Down Release Mechanisms
 - Operating Temperature: -30°C to +50°C
 - Non-Operating Temperature: -40° C to +70° C
 - Power: 28 VDC regulated (unregulated to be ready in '24)

Parameter:	Value:
Manipulator mass	35.4 kg (CBE, 10% margin)
Spacecraft subassemblies mass	4.1 kg (CBE, 10% margin)
Reach	1.965 m
Stowage Volume	994mm x 652mm x 273mm
Degrees of Freedom	6
Joint torque rating	220 Nm
Max tip speed	25 mm/s (adjustable)
Max manipulatable mass	1900kg @10 mm/s ² max acceleration
Control type	Cartesian control, joint space control
Joint control type	Field Oriented Control with Encoder
Joint control accuracy	0.05°

STAARK Autonomy State & Roadmap

Robotics Control Unit (RCU) Overview

The Robotics Control Unit has 3 sub-units:

- Interface Printed Control Board IPCB:
 - Ethernet for video data processing capability
 - RS-422 for interaction with customer
- Robotics Processing Unit RPU:
 - 1 x Supervisor for internal arm level FDIR, fault handling
 - High performance application processor to run joint and arm utilities in pseudo-real-time
- Power Distribution Unit PDU:
 - Galvanic isolation and power management
 - Heater latch-up current limiters to each joint group

BUILD ABOVE

7

System Testing

EQM Verification Philosophy

Applicability List for test campaign

	UUT				Baseline Tests Involved in Document											
Document Name and Number				1.1	1.2	1.3	1.4	2.1	2.2	2.3	2.4	3.1	3.2	4.1	4.2	
	Joint	Arm	RCU	Subsystem check	Functional	Performance	Life Cycle	Physical Mes.	Random Vib.	Sine Vib.	Shock	IVAC (Functional)	TVAC (Cyc.le)	EMI / EMC	ESD	
Joint level Functional Test																
Procedure Doc. Nr. TBC	~			Y												
EQM Vibration Test																
Procedure		\checkmark			Y				Y	Y	Y					
Doc. Nr. RWE-ESA-STA-PRO-6545																
EQM Performance Test																
Procedure		~	\checkmark			Y										
Doc. Nr. IBC						-							-			
EQMITVAC Test		1										\mathbf{v}	\mathbf{v}			
Doc Nr. 78C		*											1 ° 1			
RCU TVAC Test Procedure			1									Y	Y			
Doc. Nr. 78C						_			<u> </u>				_			
EQM#RCU EMI/EMC and		1	1											v	\mathbf{v}	
Doc. Nr. TBC		*	*												Ľ	
RCU Vibration Test																
Procedure			\checkmark						Y	Y	Y					
Doc. Nr. TBC																
System Level TVAC Test																
Procedure Doc. Nr. TBC		1	~									Y	Y			
Life Cycle Test Procedure	1						Y									
Doc. Nr. TBC																

Y : Tests from the baseline are covered in the test procedure

Unit under test include these sub-systems

STAARK Vibration Testing

Qualification Status

STAARK Qualification Campaign

STAARK Qualification Model is currently under qualification to the following lev

Thermal

- Joint TVAC Qualification (2021)
- Robot Arm Thermal Cycling (2023)
- Robot Arm Thermal Balance (2022)
- 22) 🔽

 \checkmark

 \checkmark

• RCU Thermal and Vibration Campaign (Q3/4 2023)

Structural:

- Random (14.3 GRMS) (qualified in 2023) 🗸
- Sine (25g in X/Y/Z) (qualified in 2023)

EDWIRE

• Shock (upon request)

EMI/EMC

- Radiated RE, RS ECSS/MSFC/GEVS (Q4 2023)
- Conducted CE, CS ECSS/MSFC/GEVS (Q4 2023)
- ESD/FCD (first contact discharge) with target (Q4 2023)

Joint TVAC Performance Testing

STAARK Functional Testing

STAARK Thermal Balance Testing

Latest Arm & RCU Testing

RCU STM Vibration Testing

Arm EQM TVAC Testing

Next steps

- Mechanisms
- Qualification of input shaft position sensor
- Manipulator Performance tests
- Software qualification
- Robotics capabilities
 - Visual servoing
 - Compliance Control
 - Tool integration
 - Dynamic model identification

Looking for:

- F/T sensors
- End-effectors

End of Slides

Menelaos Vidakis menelaos.vidakis@redwirespaceeurope.com Dr. Jan Dentler jan.dentler@redwirespaceeurope.com

BUILD ABOVE | 15